Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas.
نویسندگان
چکیده
Plasmonic nanoantennas create locally strongly enhanced electric fields in so-called hot spots. To place a relevant nanoobject with high accuracy in such a hot spot is crucial to fully capitalize on the potential of nanoantennas to control, detect, and enhance processes at the nanoscale. With state-of-the-art nanofabrication, in particular when several materials are to be used, small gaps between antenna elements are sought, and large surface areas are to be patterned, this is a grand challenge. Here we introduce self-aligned, bottom-up and self-assembly based Shrinking-Hole Colloidal Lithography, which provides (i) unique control of the size and position of subsequently deposited particles forming the nanoantenna itself, and (ii) allows delivery of nanoobjects consisting of a material of choice to the antenna hot spot, all in a single lithography step and, if desired, uniformly covering several square centimeters of surface. We illustrate the functionality of SHCL nanoantenna arrangements by (i) an optical hydrogen sensor exploiting the polarization dependent sensitivity of an Au-Pd nanoantenna ensemble; and (ii) single particle hydrogen sensing with an Au dimer nanoantenna with a small Pd nanoparticle in the hot spot.
منابع مشابه
Repetitive Hole-Mask Colloidal Lithography for the Fabrication of Large-Area Low-Cost Plasmonic Multishape Single-Layer Metasurfaces
Nanostructuring for tailored optical functionality suffers from a lack of methods for large-area and low-cost fabrication. While electron beam lithography allows different complex shapes to be deposited onto the same substrate layer, the writing process is sequential and the fabrication is very expensive. Large-area methods, such as nanosphere lithography, [ 1 ] colloidal lithography using shad...
متن کاملLarge-area Low-cost Fabrication of Complex Plasmonic Nanostructures for Sensing Applications
In this thesis, we introduce hole-mask colloidal lithography and nanosphere lithography techniques for low-cost nanofabrication of large-area (about 1 cm) plasmonic nanostructures with different complex shapes. For the first one, we use thin film PMMA-gold hole-masks, which are first prepared with polystyrene colloids, combined with following tilted-angle-rotation evaporation to fabricate large...
متن کاملScalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography.
Localization of large electric fields in plasmonic nanostructures enables various processes such as single-molecule detection, higher harmonic light generation, and control of molecular fluorescence and absorption. High-throughput, simple nanofabrication techniques are essential for implementing plasmonic nanostructures with large electric fields for practical applications. In this article we d...
متن کاملHole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials
Many nano-optical applications require a suitable nanofabrication technology. Hole-mask colloidal nanolithography has proven to be a low-cost and large-area alternative for the fabrication of complex plasmonic nanostructures as well as metamaterials. In this paper, we describe the fabrication process step by step. We manufacture a variety of different plasmonic structures ranging from simple na...
متن کاملCascaded field enhancement in plasmon resonant dimer nanoantennas compatible with two-dimensional nanofabrication methods
Cascaded field enhancement is demonstrated in asymmetric plasmon resonant dimer nanoantennas consisting of shape-tuned ellipsoidal nanoparticles. The nanoparticles that make up the dimer have identical thickness, suggesting that the presented approach can be used to design cascaded dimer antennas compatible with standard two-dimensional top-down nanofabrication tools such as electron beam litho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 14 5 شماره
صفحات -
تاریخ انتشار 2014